Vitamin E Mempertahankan Kemampuan EPC yang Dipapar Glukosa Tinggi dalam Pelepasan NO dan Induksi Migrasi Sel Endotel

Authors

  • Dian Nugrahenny Laboratorium Farmakologi Fakultas Kedokteran Universitas Brawijaya Malang
  • M Aris Widodo Laboratorium Ilmu Farmakologi Fakultas Kedokteran Universitas Brawijaya Malang
  • Nur Permatasari Laboratorium Ilmu Farmakologi Fakultas Kedokteran Universitas Brawijaya Malang

DOI:

https://doi.org/10.21776/ub.jkb.2012.027.01.2

Abstract

Peran sel progenitor endotel (EPC) dalam angiogenesis terganggu pada diabetes. Penelitian dilakukan untuk mengamati efek  vitamin  E  pada  kemampuan  EPC  yang  dipapar glukosa  tinggi  dalam melepaskan  NO dan  menginduksi  migrasi  sel endotel.  Sel mononuklear diisolasi dari darah perifer subjek sehat.  Pada hari ke-7, kultur EPC diberikan glukosa normal (5 mM) dengan atau tanpa pemberian vitamin E 22 µM atau 50 µM sebagai kontrol, atau diberikan glukosa tinggi (22 mM) dengan  atau  tanpa  pemberian  vitamin  E  22  µM  atau  50  µM  selama  24  jam.  Fungsi  EPC  dinilai  dengan  mengevaluasi  migrasi HUVEC setelah pemberian supernatan EPC. Migrasi HUVEC dinilai dengan uji migrasi wound-healing. Konsentrasi NO dan H O   EPC diukur dengan uji kolorimetrik.  Superoksid EPC dinilai dengan uji NBT .  Pemberian glukosa tinggi mengakibatkan 2 2penurunan kemampuan EPC dalam menginduksi migrasi HUVEC, penurunan NO EPC, serta peningkatan superoksid dan H O   EPC.  Pemberian  vitamin  E  50  µM  dapat  menghambat  penurunan  kemampuan  EPC  dalam  menginduksi  migrasi 2 2HUVEC,  dan  efek  ini  terkait  dengan  konsentrasi  NO,  superoksid  dan  H O   EPC.  Pemberian  vitamin  E  dapat 2 2mempertahankan kemampuan EPC yang dipapar glukosa tinggi dalam melepaskan NO dan menginduksi migrasi HUVECs melalui  hambatan  peningkatan  superoksid  dan  H O   EPC.2 2Kata  Kunci:  EPC,  glukosa  tinggi,  NO,  ROS,  vitamin  E

Downloads

Download data is not yet available.

References

Mihardja L, Delima, Manz HS, Gani L, and Soegondo S. Prevalence and Determinants of Diabetes Mellitus and Impaired GlucoseTolerancein Indonesia (A Part of Basic Health Research/RISKESDAS). Acta Medica Indonesiana. 2009; 41(4): 169-174.

Choi YJ, Lim HS, Choi JS, et al. Blockade of Chronic High Glucose–Induced Endothelial Apoptosis by Sasa Borealis Bamboo Extract. Experimental Biology and Medicine. 2008; 233(5): 580-591.

Shantsila E, Watson T, and Lip GYH. Endothelial Progenitor Cells in Cardiovascular Disorders. Journal of the American College of Cardiology . 2007;49:741-752.

Yoon CH, Hur J, Park K, et al. Synergistic Neovascularization by Mixed Transplantation of Early Endothelial Progenitor Cells and Late Outgrowth Endothelial Cells: The Role of Angiogenic Cytokines and Matrix Metalloproteinases. Circulation. 2005; 112: 1618-1627.

You D, Waeckel L, Ebrahimian TG, et al. Increase In Vascular Permeability and Vasodilation are Critical for Proangiogenic Effects of Stem Cell Therapy.Circulation. 2006; 114(4): 328-338.

Lamalice L, Le Boeuf F, and Huot J. Endothelial Cell Migration During Angiogenesis. Circulation Research. 2007; 100: 782-794.

Schmidt A, Brixius K, and Bloch W. Endothelial Precursor Cell Migration During Vasculogenesis. Circulation Research. 2007; 101: 125-136.

Szabo C. Role of Nitrosative Stress in the Pathogenesis of Diabetic Vascular Dysfunction. British Journal of Pharmacology. 2009; 156(5): 713-727.

Morales-Ruiz M, Fulton D, Sowa G, et al. Vascular Endothelial Growth Factor-Stimulated Actin Reorganization and Migration of Endothelial Cells is Regulated Via the Serine/Threonine Kinase Akt. Circulation Research. 2000; 86(8): 892-896.

Srivastava SK, Ramana KV, and Bhatnagar A. Role of Aldose Reductase and Oxidative Damage in Diabetes and the Consequent Potential for Therapeutic Options. Endocrine Reviews. 2005; 26(3): 380-392.

Schalkwijk CG and Stehouwer CD. Vascular Complications in Diabetes Mellitus: The Role of 8. Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, and Kamata K. Insulin-Inducedimpairment Via Peroxynitrite Production of Endothelium-Dependent Relaxation and Sarco/Endoplasmic Reticulum Ca(2+)-Atpase Function in Aortas from Diabetic Rats. Free Radical Biology and Medicine. 2007; 43(3): 431–443.

Srinivasan S, Hatley ME, Bolick DT, et al. Hyperglycaemia-Induced Superoxide Production Decreases Enos Expression Via AP-1 Activation in Aortic Endothelial Cells. Diabetologia. 2004; 47: 1727–1734.

Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, and Brownlee M. Hyperglycaemia Inhibits Endothelial Nitric Oxide Synthase Activity by Posttranslational Modification at the Akt Site. The Journal of Clinical Investigation. 2001; 108(9): 1341–1348.Endothelial Dysfunction. Clinical Science. 2005; 109(2): 143-159.

Zheng ZZ and Liu ZX. Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase Akt Pathway Mediates Nitric Oxide-Induced Endothelial Cell Migration and Angiogenesis. The International Journal of Biochemistry and Cell Biology. 2007; 39(2): 340-348.

Ulker S, McKeown PP, and Bayraktutan U. Vitamins Reverse Endothelial Dysfunction through Regulation of Enos and NAD(P)H Oxidase Activities. Hypertension. 2003; 41(3): 534-539.

Ganz MB and Seftel A. Glucose-Induced Changes in Protein Kinase C and Nitric Oxide are Prevented by Vitamin E. American Journal of Phisiology Endocrinology and Metabolism. 2000;278(1):146–152.

Tepper OM, Galiano RD, Capla JM, et al. Human Endothelial Progenitor Cells From Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation Into Vascular Structures. Circulation. 2002; 106(22): 2781-2786.

Fadini GP, Agostini C, and Avogaro A. Endothelial Progenitor Cells and Vascular Biology in Diabetes Mellitus, Current Knowledge and Future Perspective. Current Diabetes Review. 2005; 1(1): 41-58.

Chen YH, Lin SJ, Lin FY, et al. High Glucose Impair Early and Late Endothelial Progenitor Cell by Modifying Nitric Oxide–Related but Not Oxidative StressMediated Mechanism. Diabetes. 2007; 56(6): 1559-1568.

Khotimah H, Widodo MA, and Karyono S. Effect of Vitamin E and Vitamin C Towards Bioavailability of Endothelial Nitric Oxide, Malondialdehid Level and Cell Density in High Glucose Condition. 4th Congress of Pharmacology. Bali, 2004.

Olson SE and Seidel GE Jr. Culture of In Vitro-Produced Bovine Embryos with Vitamin E Improves Development In Vitro and After Transfer to Recipients. Biology of Reproduction. 2000; 62(2): 248-252.

Permatasari N, Widodo MA, and Sumitro SB. High Glucose Concentration Increase Basal Calcium Intracellular Concentration ([Ca2+]) in Human Umbilical Vein Endothelial Cells (HUVECs) Cultured. Journal Asian Federation on Endocrine Societies. 2002; 2(1): 139-141.

Esfandiari N, Sharma RK, Saleh RA, Thomas AJ, and Agarwal A. Utility of the Nitroblue Tetrazolium Reduction Test for Assessment of Reactive Oxygen Species Production Byseminal Leukocytes and Spermatozoa. Journal of Andrology. 2003; 24(6): 862–870.

Langer H, May AE, Daub K, et al. Adherent Platelets Recruit and Induce Differentiation of Murine Embryonic Endothelial Progenitor Cells to Mature 15. Aalst JA, Zhang D, Miyazaki K, Colles SM, Fox PL, and Graham LM. Role of Reactive Oxygen Species in Inhibition of Endothelial Cell Migration by Oxidized Low-Densitylipoprotein. Journal Vascular Surgery. 2004; 40(16): 1208-1215.Endothelial Cells In Vitro. Circulation Research. 2006; 98(2): e2-10.

Scharner D. The Non-apoptotic Function of Caspase-8 in Endothelial Precursor Cells. [Disertasi]. Johann Wolfgang Goethe-Universität, Frankfurt. 2009.

Ding QF, Hayashi T, Packiasamy ARJ, et al. The Effectof-High Glucose on NO and O through Endothelial 2 GTPCH1 and NADPH Oxidase. Life Sciences. 2004; 75(26): 3185–3194.

Romero MJ, Platt DH, Tawfik HE, et al. Diabetes-induced Coronary Vascular Dysfunction InvolvesIncreased Arginase Activity. Circulation Research. 2008; 102(1): 95–102.

Venugopal SK, Devaraj S, Yang T, and Jialal I. Α-Tocopherol Decreases Superoxide Anion Release in Human Monocytes Under Hyperglycemic Conditions Via Inhibition of Protein Kinase C-Α. Diabetes. 2002; 51(10): 3049-3054.

Rupin A, Paysant J, Sansilvestri-Morel P, et al. Role of NADPH Oxidase-Mediated Superoxide Production in the Regulation of E-Selectin Expression by Endothelial Cells Subjected to Anoxia/Reoxygenation. Cardiovascular Research. 2004; 63(2): 323-330.

Ouedraogo R, Wu X, Xu S, et al. Adiponectin Suppression of High-Glucose–Induced Reactive Oxygen Species in Vascular Endothelial Cells Evidence for Involvement of a Camp Signaling Pathway. Diabetes. 2006; 55(6): 1840–1846.

Halliwell B and Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: University Press; 1999.

Suvorava T, Kumpf S, Rauch BH, Dao VT, Adams V, and Kojda G. Hydrogen Peroxide Inhibits Exercise-Induced Increase of Circulating Stem Cells with Endothelial Progenitor Capacity. Free Radical Research. 2010; 44(2): 199-207.

Takacs P, Kauma SW, Sholley MM, Walsh SW, Dinsmoor MJ, and Green K. Increased Circulating Lipid Peroxides in Severe Preeclampsia Activate NF-Kb and Upregulate ICAM-1 in Vascularendothelial Cells. The Journal of the Federation of American Societies for Experimental Biology. 2001; 15(2): 279-281.

Okamoto T, Schlegel A, Schere PE, and Lisanti MP. Caveolin a Family of Scaffolding Protein for Organizing 'Preassembled Signaling Complexes' at the Plasma Membrane. The Journal of Biological Chemistry. 1998; 273(10): 5419-5422.

Mineo C and Shaul PW. Circulating Cardiovascular Disease Risk Factors and Signaling in Endothelial Cell Caveolae. Cardiovascular Research. 2006; 70(1): 31–41.

Maniatis NA, Brovkovych V, Allen SE, et al. Novel Mechanism of Endothelial Nitric Oxide Synthase Activation Mediated by Caveolae Internalization in 32. Camici GG, Schiavoni M, Francia P, et al. Genetic Deletion Of P66(Shc) Adaptor Protein Prevents Hyperglycemia-Induced Endothelial Dysfunction and Oxidative Stress. Proceeding of National Academy of Sciences of the United States of America. 2007; 104(12): 5217–5222.Endothelial Cells. Circulation Research. 2006; 99(8): 870–877.

Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, and Béliveau R. Regulation of Vascular Endothelial Growth Factor Receptor-2 Activity by Caveolin-1 and Plasma Membrane Cholesterol. Molecular Biology of the Cell. 2003; 14(1): 334–347.

Navarro A, Anand-Apte B, Parat MO. A Role for Caveolae in Cell Migration. The Journal of the Federation of American Societies for Experimental Biology. 2004; 18(15): 1801–1811.

Sonveaux P , Martinive P, DeWever J, et al. Caveolin-1 Expression is Critical for Vascular Endothelial Growth Factor-Induced Ischemic Hindlimb Collateralization and Nitric Oxide-Mediated Angiogenesis. Circulation Research. 2004; 95(2): 154–161.

Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, and Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). The Lancet. 1996;347(9004):781–786.

Kleinert S. HOPE for Cardiovascular Disease Prevention with ACE Inhibitor Ramipril. The Lancet. 1999; 354(9181): 841.

Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, and Guallar E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Annas of Internal Medicine. 2005;142(1):37-46.

Zhang W, Wang XH, Chen SF, et al. Biphasic Response of Endothelial Progenitor Cell Proliferation Induced By High Glucose and its Relationship with Reactive Oxygen Species. Journal of Endocrinology. 2008; 197(3):463-470.

Shenouda SM, Widlansky ME, Chen K, et al. Altered Mitochondrial Dynamics Contributes to Endothelial Dysfunction in Diabetes Mellitus. Circulation. 2011;124(4):444-453.

Downloads

Published

2013-04-25

Issue

Section

Research Article