User
Information for Reviewer
Index

JKB telah terindex di Crossref JKB telah terindex di Google Scholar JKB telah terindex di SINTA Ristekdikti JKB telah terindex di Portal Garuda

Notifications
Journal Content

Browse
Visitor Counter

 

Epigallocatechin Gallate Menghambat Resistensi Insulin pada Tikus dengan Diet Tinggi Lemak

Herin Mawarti, Retty Ratnawati, Diana Lyrawati
  Jurnal Kedokteran Brawijaya, Vol 27, No 1 (2012),  pp.43-50  

Abstract


Konsumsi Epigallocatechin Gallate (EGCG) teh hijau dilaporkan banyak bermanfaat pada upaya peningkatan kesehatan, seperti pembakaran lemak, mencegah obesitas dan sensitifitas insulin. Sehingga   teh hijau (Camelia sinensis) dari klon GMB4  dapat  dikembangkan  sebagai  agen  terapeutik  potensial  untuk  obesitas  dan  resistensi  insulin.  Penelitian  ini bertujuan   untuk  membuktikan  Epigallocatechin  Gallate  (EGCG) teh  hijau  dapat  menghambat  peningkatan  kadar  SREBP-1 jaringan  adiposa  dan  resistensi  insulin  pada  tikus  galur  wistar   jantan   yang  diberi  diet  tinggi  lemak.  Penelitian  ini  dilakukan secara  invivo  dengan  pemeliharaan  hewan  coba  selama  8  minggu  yang  dibagi  dalam  lima  kelompok  perlakuan:  (1) kelompok  kontrol  (-)  dengan  pemberian  diet  pakan  standart,  (2)  kelompok  kontrol  (+)  dengan  pemberian  diet  tinggi lemak,  (3)Pemberian  diet  tinggi  lemak+EGCG  1mg/kgBB,  (4)  Pemberian  diet  tinggi  lemak+EGCG  2  mg/kgBB,  (5) Pemberian  diet  tinggi  lemak+EGCG  8  mg/kgBB. Pakan  tikus  diberikan  secara  oral,  sedangkan  EGCG  per  sonde  1  x/hr . Metode  yang  digunakan  dalam  penelitian  ini  adalah  ELISA  untuk  kadar  insulin  dan  SREBP-1  jaringan  adiposa  dan spektrofotometri  untuk  glukosa  darah  puasa.  EGCG  menurunkan  lemak  viseral,  kadar  glukosa,  kadar  SREBP-1  dan resistensi insulin (HOMA-IR) (p<0,05). Penurunan kadar SREBP-1 secara signifikan sebesar 29,85%(p<0,05) pada dosis 8 mg/kgBB,  sedangkan  HOMA-IR  menurun  secara  signifikan  sebesar  33,89%  (p<0,05)  pada  dosis  8  mg/kgBB.

Full Text:

PDF

References


Pimentel GD. AMP-Activated Protein Kinasen (AMPK)-the Key Role in Metabolic and Control of Food Intake. Nutrire Revistada Sociedade Brasileira de Alimentação e Nutrição Journal of The Brazillian Society of Food and Nutrition. 2009; 34: 159-173.

Departemen Kesehatan RI. Laporan Hasil RISKESDAS Nasional. Jakarta: Departemen Kesehatan RI. 2008.

Cook A and Cowan C. Adipose the Stem Cell Research Community. Boston: Harvard Stem Cell Institute; 2009.

Kopelman PG, Caterson IP, and Dietz WH. Clincal Obesity in Adulth and Children. 3rd edition. State Avenue, Ames: Wiley Blackwell; 2010.

Ferre P and Foufelle F. Transcription Factor and Lipid Homeostasis: Clinical Perspective. Hormone Research. 2007: 68; 72-82.

Shimano H.SREBPs: Physiology and Pathophysiology of the SREBP Family. FEBS Journal. 2008: 276(3); 616–621.

Kim JB, Sarraf P, Wright M, et al. Nutritional and Insulin Regulation of Fatty Acid Synthetase and Leptin Gene Ekspresi Throught ADD1/SREBP-1. Journal of Clinical Investigation. 1998: 101(1); 1-9.

Horton JD, Goldstein JL, and Brown MS. Activators of Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver. Journal of Clinical Investigation. 2002: 109: 1125-1131

Desvergne B, Michalik L, and Wahli W. Transcriptional Regulation of Metabolism. Physiological Review.2006: 86; 465–514.

Coleman RA, Lewin TM, and Muoio D. Physiological and Nutritional regulation of enzymes of triacylgycerol Synthesis. Annual Review of Nutrition. 2000: 20; 77-103

Kahn BB and Flier JS. Obesity and Insulin resistence. Journal of Clinical Investigation. 2000: 106(4); 473-481.

Unger RH and Orci L. Diseases of Liporegulation: New Perspective On Obesity and Related Disorders. FEBS Journal. 2001: 15(2); 312-321.

Dominic S. Insulin Resistance, Diabetes and its Complications. In: Robert A. Meyers (Ed). Encyclopedia of MolecularCell Biology and Molecular Medicine 2nd edition. Wenheim: Willey-VCH; 2005.

Park S, Kim YW, Kim JY, Jang K, and Lee SK. Effect of High Fat Diet on Insulin Resitance: Dietary Fat Versus Visceral Fat Mass. Journal of Korean Medical Science. 2001: 10; 580-590.

Blaak. Fatty Acids: Friends or Foe? Relation Betwen Dietary Fat and Insulin Sensitivity. Immunology, Endocrine & Metabolic Agents - Medicinal Chemistry. 2007: 7; 31-37.

Intan M and Wijaya A. Obesitas dan Sindroma Metabolik. Laboratorium Klinik Prodia. Forum Diagnosticum. 2004: 5.

Fashauer Mand Pasche R. Regulation of Adipocytokines and Insulin Resistance. Diabetologia. 2003: 46 (12); 1594-1603.

Chen N, Bezzina R, Hinch E, et al. Green Tea, Black Tea, and Epigallocatechin Modify Body Composition, Improve Glucose Tolerance, and Differentially Alter Metabolic Gene Expression in Rats Fed a High–Fat Diet. Nutrition Research. 2009: 29; 784-793

Lee MS, Kim CT, and Kim Y. Green Tea (–)-Epigallocatechin-3-Gallate Reduces Body Weight with Regulation of Multiple Genes Expression in Adipose Tissue of Diet-Induced Obese Mice. Annals of Nutrition and Metabolism. 2009: 54(2);151-157.

Wolfram S, Raederstorff D, Wang Y, T eixeira, SR, Elste, V, and Weber P. TEAVIGO (Epigallocatechin Gallate) Supplementation Prevent Obesity in Rodent by Reducing Adipose Tissue Mass. Annals of Nutrition and Metabolism. 2005: 49(1): 54-63.

Klaus S, Pultz S, Thone RC, and Wolfram S. Epigallocathechin Gallate Attenuates Diet-Induced Obesity in Mice by Decreasing Energy Absorption and Increasing Fat Oxidation. International Journal of Obesity. 2005: 29(6); 615-623.

Anderson RA and Polansky MM. Tea Enhances Insulin Activity. Journal of Agricultural and Food Chemistry. 2002: 50(24); 7182-7186.

Sohle J, Knott A, Holtzmann U, et al. White Tea Extract Induces Lipolytic Activity and Inhibits Adipogenesis in Human Subcutaneous (Pre)-Adipocytes. Nutrition & Metabolism. 2009: 6: 20

Bose M, Lambert JD, Ju J, Reuhi KR, Shapses SA, and Yang CS. The Major Green Tea Polyphenol, (–)-Epigallocatechin-3-gallate, Inhibit Obesity, Metabolic Syndrome, and Fatty liver Disease in High–fat-fed Mice. Journal of Nutrition. 2008: 138(9); 1677-1683.

Ratnawati R, Ciptati, dan Satuman. Isolasi EGCG dari Teh Hijau Klon GMB4 Jawa Barat. [Laporan Penelitian Program Insentif Riset Dasar RISTEK Kementerian Negara Riset dan Teknologi]. Universitas Brawijaya Malang. 2009.

Wilde JD, Smit E, Mohren R, et al. An 8-Week High-Fat Diet Induces Obesity and Insulin Resistance with Small Changes in the Muscle Transcriptome of C57BL/6J Mice. Journal of Nutrigenetic and Nutrigenomics. 2009:2(6); 280-291.

Vessby B, Uusitupa M, Hermansen K, et al. Substituting Dietary Saturated for Monounsaturated Fat Impairs Insulin Sensivity in Healthy Men and Women; The KANWU Study. Diabetologia. 2001: 44;312-319

Griffin ME, Marcucci MJ, Cline GW, et al. Free Fatty Acid-Induced Insulin Resistance is Associated with Activation of Protein Kinase C Theta and Alterations in the Insulinsignaling Scade. Diabetes. 1999: 48(6); 1270-1274.

Simpson ER, Clyne C, Rubin G, et al. Aromatase: a Brief Overview. Annual Review Physiology. 2002: 64; 93-127

Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, and Cooke PS. Increased Adipose Tissue in Male and Female Estrogen Receptor-Alpha Knockout Mice. Annual Meetings of the Society for the Study of Reproduction. Pullman, July 31–August 3, 1999, and Madison, July 15–18, 2000.

Koyama Y, Abe K, Sano Y, et al. Effects Of Green Tea on Gene Expression of Hepatic Gluconeogenic Enzymes in Vivo. Planta Medica. 2004: 70(11); 1100–1102.

Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, and Granner DK. Epigallocatechin Gallate, a Constituent of Green Tea, Represses Hepatic Glucose Production. The Journal of Biological Chemistry. 2007: 282(41); 30143–30149.

Chien PJ, Chen YC, Lu SC, and Sheu F. Dietary Flafonoids Suppress Adipogenesis in 3T3-LI Preadipocytes. Journal of Food and Drug Analysis. 2005: 13(2); 168-175

Lin J, Mary ADF, and Clifton AB. Green Tea Polyphenol Epigallocatechin Gallate Inhibits Adipogenesis and Induces Apoptosis in 3T3-L1 Adipocytes. Obesity Research. 2005: 13(6); 982-990.

Shrestha S, Ehlers SJ, Lee JY, Fernandez ML, and Koo SL. Dietary Green Tea Extract Lowers Plasma and Hepatic Triglycerides and Decreases the Expression of Sterol Regulatory Element Binding Protein-1c mRNA and its Responsive Genes in Frutose Fed, Ovariectomized Rats. Journal of Nutrition. 2009: 139(4); 640-645.

Bray GA. Medical Consequences of Obesity. The Journal of Clinical Endocrinology and Metabolism. 2004: 89(6); 2583-2589.

Meier U and Gressner AM. Endokrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical As pects of Leptin, Ghrelin, Adiponectin, and Resistin. Clinical Chemistry. 2004: 50(9); 1511-1525.

Despres J and Krauss RM. Obesity and Lipoprotein Metabolism. In: Bray GA (Ed). Handbook of Obesity. New York: Marcel Dekker Inc.; 1998: p. 651-676.

Chen HC, Sajan MP, Standaert ML, et al. Role of Adypocyte Derivate Factor Enhancer Insulin Signaling in Skeletal, White Adypocyte Tissue in Mice Lack in Acyl-Coa Diacylglycerol Transferase. Diabetes. 2004: 53; 1445-1451

Axen KV and Axen K. Very Low-Carbohydrate Versus Isocaloric Highcarbohydrate Diet in Dietary Obese Rats. Obesity. 2006: 14(8); 1344-1352

Buettner R, Parhofer KG, Woenckhaus M, et al. Defining High-Fat-Diet Rat Models: Metabolic and Molecular. Journal of Molecular Endocrinology. 2006: 36(3); 485–501.

Wu LY, Juan CC, Ho LT, Hsu YP, and Hwang LS. Effect of Green Tea Supplementation on Insulin Sensitivity in Sprague-Dawley Rats. Journal of Agricultural Food Chemistry. 2004: 52(3); 643-648.

Ashida H, Furuyashiki T, Nagayasu H, et al. Anti-Obesity Actions of Green Tea: Possible Involvements in Modulation of the Glucose Uptake System and Suppression of the Adipogenesis-Related Transcription Factors. BioFactors. 2004: 22(1-4); 135-140.

Potenza MA, Marasciulo FL, Tarquinio M, et al. EGCG, a Green Tea Polyphenol, Improves Endothelial Function and Insulin Sensitivity, Reduces Blood Pressure, and Protects Against Myocardial I/R Injury in SHR. American Journal of Psyhiology-Endocrinology and Metabolism. 2007: 292(5); 1378–1387.

Chen PC, Wheeler DS, Malhotra V, Odoms K, Denenberg AG, and Wong HR. A Green Tea-Derived Polyphenol, Epigallocatechin-3-Gallate, Inhibits I Kappa B Kinase Activation and IL-8 Gene Expressionin Respiratory Epithelium. Inflammation. 2002: 26(5); 233–241.

Deniau IG, Pichard AL, Koné A, et al. Glucose Induces De Novo Lipogenesis in Rat Muscle Satellite Cells Through a Sterol-Regulatory-Elementbinding-Protein-1c-Dependent Pathway. Journal of Cell Science. 2004: 117 (10); 1937-1944.

Nishikawa T, Edelstein D, Du XL, et al. Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hyperglycaemic Damage. Nature. 2000: 404; 787-790.

Shaw S, Wang X, Redd H, Alexander GD, Isales CM, and Marrero MB. High Glucose Augments the Angiotensin II-Induced Activation of JAK2 in Vascular Smooth Muscle Cells Via the Polyol Pathway. The Journal of Biological Chemistry. 2003: 278(33); 30634-30641.




DOI: http://dx.doi.org/10.21776/ub.jkb.2012.027.01.8

Refbacks

  • There are currently no refbacks.