Pengaruh Ekstrak Pegagan (Centella asiatica) terhadap Ekspresi Tirosin Hidroksilase (TH) serta Aktivitas Lokomotor Ikan Zebra (Danio rerio)

Authors

  • Syafira - Hanum Brawijaya University
  • Mochammad Aris Widodo Brawijaya University
  • Masruroh - Rahayu Brawijaya University

DOI:

https://doi.org/10.21776/ub.jkb.2016.029.02.1

Abstract

Beberapa faktor yang mungkin berpengaruh atau menjadi penyebab Parkinson adalah genetik dan lingkungan. Faktor lingkungan termasuk didalamnya adalah paparan dari organofosfat atau insektisida diduga merupakan salah satu faktor risiko terjadinya berbagai penyakit neurodegeneratif antara lain Alzheimer, Parkinson, Multiple sclerosis. Rotenone dapat masuk ke jaringan dan merusak dopaminergic synapses pada substansia nigra (SN) pars compacta dan jalur nigrostriatal sehingga akan menyebabkan penurunan pada kadar dopamin dan akan berpengaruh pada aktivitas lokomotor. Pengobatan Parkinson bertujuan untuk mencegah kematian neuron dopaminergic. Pegagan mempunyai efek sebagai antioksidan dan antiinflamasi mampu mencegah stres oksidatif serta membersihkan radikal bebas. Penelitian ini bertujuan untuk menguji efek ekstrak pegagan (Centella asiatica) berbagai dosis dalam memperbaiki aktivitas lokomotor dan menurunkan ekspresi Tirosin hidroksilase (TH) di otak ikan zebra (Danio rerio). Ikan zebra yang dibagi menjadi 5 kelompok, yaitu kelompok kontrol negatif, kelompok kontrol positif, kelompok perlakuan yang dipapar rotenone dan dberikan perlakuan ekstrak pegagan masing-masing dosis 2,5μg/ml, 5μg/ml, dan 10μg/ml. Setiap kelompok terdiri dari 5 ikan zebra. Pada setiap kelompok dilakukan pengukuran aktivitas lokomotor ikan zebra pada hari ke-0, 7, 14, 21, dan 28. Selain itu juga dilakukan penghitungan ekspresi Tirosine hidroksilase (TH) dengan menggunakan teknik imunohistokimia dari jaringan otak ikan zebra pada setiap kelompok di hari ke-28. Terbukti bahwa ekstrak pegagan (Centella asiatica) dapat memperbaiki aktivitas lokomotor dan meningkatkan ekspresi Tirosin hidroksilase di otak ikan zebra (Danio rerio).
Kata Kunci: Centella asiatica, aktivitas lokomotor, tirosine hidroksilase, rotenone

Downloads

Download data is not yet available.

Author Biographies

Syafira - Hanum, Brawijaya University

Departement Neurology

Mochammad Aris Widodo, Brawijaya University

Farmacology Departement

Masruroh - Rahayu, Brawijaya University

Neurology Departement

References

Ottley RG, Agbontaen JX, and Fodstad H. Tailoring Treatment for the Parkinson's Disease Patient. Journal of the American Academy of Physician Assistants. 1999; 12(3): 54-56, 59-60, 63-66.

Henchcliffe C. An Update on Parkinson's Disease. Minneapolis: The American Academy of Neurology Institute; 2012.

Khotimah H, Riawan W, Kalsum U, Widodo MA, and Kishida M. Neuroprotective Effect of Pegagan Leaf (CeA): Induction of Brain-Derived Neurotrophic Factor (BDNF) Production, TNFα, BCL2 Expression and Apoptosis on Rat Pup Neuronal Cells in Vitro. (Online) 2014. http://herbalnet.healthrepository.org

Cicchetti F, Droulin-Ouller J, and Gross RE. Enviromental Toxins and Parkinson's Disease: What Have We Learned from Pesticide-Induced Animal Models? Trends in Pharmacological Sciences. 2009; 30(9): 475-483.

Kishida M and Callard GV. Distinct Cytochrome P450 Aromatase Isoforms in Zebrafish (Danio rerio) Brain and Ovary are Differentially Programmed and Estrogen Regulated during Early Development. Endocrinology. 2001; 142(2): 740-750.

Orhan IE. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential. Evidence-Based Complementary and Alternative Medicine. 2012; 2012: 8.

Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, and Greenamyre JT. Chronic Systemic Pesticide Exposure Reproduces Features of Parkinson's Disease. Nature Neuroscience. 2000; 3(12): 1301-1306.

Hartmann A, Hunot S, Michel PP, et al. Caspase-3: A Vulnerability Factor and Final Effector in Apoptotic Death of Dopaminergic Neurons in Parkinson's Disease. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(6): 2875-2880.

Menke AL, Spitsbergen JM, Wolterbeek APM, and Woutersent RA. Normal Anatomy and Histology of the Adult Zebrafish. Toxicologic Pathology. 2011; 39(5): 759-775

Dauer W, Przedborski S. Parkinson's Disease: Mechanisms and Models. Neuron. 2003: 39(6); 889–909.

Ling, N. Rotenone-A Review of Its Toxicity and Use for Fisheries Management. Science for Conservation 211. New Zealand: Department of Conservation; 2003; pp. 40.

Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, and Greenamyre JT. Rotenone Model of Parkinson Disease: Multiple Brain Mitochondria Dysfunctions after Short Term Systemic Rotenone Intoxication. Journal of Biological Chemistry. 2005; 280(51): 42026-420235.

Sharma N and Nehru B. Beneficial of Vitamin E in Rotenone Induced Model of PD: Behavioural, Neurochemical and Biochemical Study. Experimental Neurobiology. 2013; 22(3): 214-223.

Kumar V, Aakanksha T, Singh BK, Nagarajan K, Machawal L, and Bajaj UK. Attenuating Depression Behavior by Centella Asiatica Extract & Venlafaxine in Mice Induced through Forced Swim and Tail Suspension Test. International Journal of Pharmacology and Toxicology. 2013; 1(2): 29-35.

Testa CM, Sherer TB, and Greenamyre JT. Rotenone Induces Axidative Stress and Dopaminergic Neuron Damage in Organotypic Substantia Nigra Cultures. Molecular Brain Research. 2005; 134(1): 109-118.

Downloads

Published

2016-09-01

Issue

Section

Research Article