User
Information for Reviewer
Index

JKB telah terindex di Crossref JKB telah terindex di Google Scholar JKB telah terindex di SINTA Ristekdikti JKB telah terindex di Portal Garuda

Notifications
Journal Content

Browse
Visitor Counter

 

Efek Pemberian Protein Rekombinan Fusi ESAT6-CFP10 Mycobacterium tuberculosis terhadap Persentase IL2 dan IL10 yang Dipresentasikan Sel T CD8 pada Kultur PBMC

David Christianto, Tri Yudani Mardining Raras, Sumarno Sumarno, Maimun Zulhaidah Arthamin, Triwahju Astuti, Teguh Wahyu Sardjono, Noorhamdani A S
  Jurnal Kedokteran Brawijaya, Vol 30, No 3 (2019),  pp.202-208  

Abstract



Keberhasilan vaksin BCG dalam memberikan perlindungan terhadap tuberkulosis (TB) pada orang dewasa di Indonesia belum optimal (37%) sehingga diperlukan vaksin alternatif yang lebih efektif. Protein rekombinan fusi ESAT6-CFP10 merupakan kandidat vaksin yang potensial. Penelitian dilakukan untuk menguji efektifitas protein rekombinan fusi ESAT6-CFP10 dalam meningkatkan ekspresi IL2 dan IL10 sel T CD8 yang memainkan peran penting dalam respon imun melawan TB. Pengujian kandidat vaksin dilakukan secara in vitro pada peripheral blood mononuclear cell (PBMC) dari kelompok sehat endemik TB, kelompok kontak TB, dan kelompok pasien TB dengan melihat persentase IL2 dan IL10 CD8. Setiap kelompok diberi perlakuan tanpa antigen, PPD, dan protein rekombinan fusi ESAT6-CFP10. Persentase IL2 meningkat secara signifikan dari kelompok sehat, kontak TB, hingga Pasien TB. Sebaliknya peningkatan persentase IL2 antar kelompok yang dipaparkan PPD tidak signifikan secara statistik (p=0,396). Persentase IL10 tidak menunjukkan perbedaan yang signifikan antar kelompoknya baik tanpa paparan antigen (p=0,617), PPD (p=0,351), maupun protein rekombinan fusi ESAT6-CFP10 (p=0,257). Didapatkan persentase IL2 yang tidak berbeda secara signifikan antar perlakuan pada kelompok sehat (p=0,309), kelompok kontak TB (p=0,318), dan kelompok pasien TB (p=0,424). Demikian juga dengan persentase IL10 yang tidak berbeda secara signifikan antar perlakuan pada kelompok sehat (p=0,908), kelompok kontak TB (p=0,352), dan kelompok pasien TB (p=0,776). Hal ini menunjukkan bahwa protein fusi rekombinan ESAT6-CFP10 dapat meningkatkan persentase IL2 tetapi tidak dengan IL10 meskipun secara statistik tidak signifikan.


Keywords


CD8; IL2; IL10; Mycobacterium tuberculosis; protein rekombinan fusi ESAT6-CFP10

Full Text:

PDF

References


World Health Organization. Global Tuberculosis Report 2016. (Online) 2016. http://apps.who.int/medicinedocs /en/d/Js23098en/

Direktorat Jendral Pengendalian Penyakit dan Penyehatan Lingkungan. Pedoman Nasional Pengendalian Tuberkulosis. Jakarta: Kementerian Kesehatan Nasional; 2014; hal. 1-210.

Das K, Thomas T, Garnica O, and Dhandayuthapani S. Recombinant Bacillus subtilis spores for the delivery of Mycobacterium tuberculosis Ag85B-CFP10 secretory antigens. Tuberculosis (Edinburgh, Scotland). 2016; 101: 18-27.

Handzel ZT. The Immune Response to Mycobacterium tuberculosis Infection in Humans. Diagnosis and Management 2013; 15(2): 19-30.

Brandt L, Elhay M, Rosenkrands I, Lindblad EB, and Andersen P. ESAT-6 Subunit Vaccination against Mycobacterium tuberculosis. Infection and immunity. 2000; 68(2): 791-795.

Kumar MM and Raja A. Cytotoxicity Responses to Selected ESAT-6 and CFP-10 Peptides in Tuberculosis. Cellular Immunology. 2010; 265(2): 146-155.

Dong H, Jing W, Runpeng Z, et al. ESAT6 Inhibits Autophagy Flux and Promotes BCG Proliferation through MTOR. Biochemical and Biophysical Research Communications. 2016; 477(2): 195-201.

Guo S, Xue R, Li Y, et al. The CFP10/ESAT6 Complex of Mycobacterium tuberculosis May Function as a Regulator of Macrophage Cell Death at Different Stages of Tuberculosis Infection. Medical Hypotheses. 2012; 78(3): 389-392.

Abbas AK, Lichtman AH, and Pillai S. Basic Immunology: Functions and Disorders of the Immune System. Philadelphia: Elsivier Sanders; 2016; pp. 232-233, 243-244.

Prayitno A, Astirin OP, and Putra ST. Immune Response Indicated by Expressing of IL-2 and IL-10 in Cervical Cancer. Journal of Cancer Therapy. 2014; 5(5): 420-426.

Sa Q, Woodward J, and Suzuki Y. IL-2 Produced By CD8+ Immune T Cells Can Augment Their IFN-Γ Production Independently from Their Proliferation in the Secondary Response to an Intracellular Pathogen. The Journal of Immunology. 2013; 190(5): 2199-2207.

Zhang N and Bevan MJ. CD8+ T Cells: Foot Soldiers of the Immune System. 2011; 35(2): 161-168.

Nhamoyebonde S and Leslie A. Biological Differences between the Sexes and Susceptibility to Tuberculosis. The Journal of infectious diseases. 2014; 209(3): 100-106.

Jiménez-Corona ME, García-García L, DeRiemer K, et al. Gender Differentials of Pulmonary Tuberculosis Transmission and Reactivation in an Endemic Area. Thorax. 2006; 61(4): 348-353.

Chang KC and Yew WW. Management of Difficult Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis: Update 2012. Respirology. 2013; 18(1): 8-21.

Mangtani P, Abubakar I, Ariti C, et al. Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clinical Infectious Diseases. 2014; 58(4): 470-480.

Husain AA, Daginawala HF, Singh L, and Kashyap RS. Current Perspective in Tuberculosis Vaccine Development for High TB Endemic Regions. Tuberculosis (Edinburgh, Scotland). 2016; 98: 149-158.

Tanner R, O'Shea MK, Fletcher HA, and McShane H. In Vitro Mycobacterial Growth Inhibition Assays: A Tool for the Assessment of Protective Immunity and Evaluation of Tuberculosis Vaccine Efficacy. Vaccine. 2016; 34(39): 4656-4665.

Turner RD and Bothamley GH. Cough and the Transmission of Tuberculosis. The Journal of Infectious Diseases. 2015; 211(9): 1367-1372.

Buyukoglan H, Gulmez I, Kelestimur F, et al. Leptin Levels in Various Manifestations of Pulmonary Tuberculosis. Mediators of Inflammation. 2007; 5: 1-6.

Meher AK, Lella RK, Sharma C, and Arora A. Analysis of Complex Formation and Immune Response of CFP-10 and ESAT-6 Mutants. Vaccine. 2007; 25(32): 6098-6106.

Nugrahani IT, Kusuma HMSC, Raras TMR, Arthamin MZ, Astuti TW, dan Tanoerahardjo F. Ekspresi IFN-γ dan IL-4 CD4+T Limfosit pada Tuberkulosis Kontak terhadap Antigen 38 Kda Mycobacterium tuberculosis. Jurnal Kedokteran Brawijaya. 2015; 28(4): 302-308.

Kleinnijenhuis J, Oosting M, Joosten LAB, Netea MG, and Crevel RV. Innate Immune Recognition of Mycobacterium tuberculosis. Clinical and Developmental Immunology. 2011; 2011: 1-12.

Maue AC, Waters WR, Palmer MV, et al. An ESAT-6:CFP10 DNA Vaccine Administered in Conjunction with Mycobacterium Bovis BCG Confers Protection to Cattle Challenged with Virulent M. Bovis. Vaccine. 2007; 25(24): 4735-4746.

Lindenstrom T, Agger EM, Korsholm KS, et al. Tuberculosis Subunit Vaccination Provides Long-Term Protective Immunity Characterized by Multifunctional CD4 Memory T Cells. The Journal of Immunology. 2009; 182(12): 8047-8055.

Yuan N, Zhang HF, Wei Q, Wang P, and Guo WY. Expression of CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming Growth Factor β in Newly Diagnosed Type 2 Diabetic Patients. Experimental and Clinical Endocrinology & Diabetes. 2018; 126(2): 96-101.




DOI: http://dx.doi.org/10.21776/ub.jkb.2019.030.03.7

Refbacks

  • There are currently no refbacks.