Anti-Metastatic Effect of Boiled Garlic Extract on A549 Lung Cancer Cells Line by FAK Mechanism

Efek Anti-Metastase Ekstrak Rebusan Bawang Putih terhadap Pertumbuhan Sel Kanker Paru A549 Lung Melalui Mekanisme FAK

Al Munawir
Department of Pathology Fakulty of Medicine University of Jember

ABSTRACT

According to epidemiological and animal study, the daily intake of garlic have important role in decreasing of cancer prevalence and tumor metastasis. However, mechanism of anti-metastatic of garlic is not fully understood. In the present study, we examined the anti metastatic effect of a brief exposure to boiled garlic extract (BGE) on A549 Lung cancer cells. Cytotoxicity BGE on A549 lung cancer cells was tested using MTT Assay. Migration and invasion scratching wound assay A549 lung cancer cells was tested using scratching wound assay and agarose dropt explants assay. The growth of A549 lung cancer cell was measured using Colony forming assay. To explore the molecular mechanism and effect of BGE on migration and invasion, western blotting was used to analyze the FAK/Paxillin pathway. We found that BGE inhibits the growth, migration and invasion of A549 lung cancer cells at 300 µg/mL. Interestingly, BGE inhibits migration and invasion of A549 lung cancer cells by decreasing the total of FAK and P-Y397 expression at 6 hours after a brief exposure, but not influence of the paxillin expression. We think the present finding demonstrate a novel anti-metastatic effect of garlic and suggests a certain garlic-derived compounds, BGE may be potential agent for inhibiting migration and invasion through decreasing the total of FAK and P-Y397 expression in the cancer cell.

Keywords: A549 lung cancer cells, boiled garlic extract, FAK mechanism, migration cell

ABSTRAK

Kata Kunci: Ekstrak rebusan bawang putih, mekanisme FAK, sel kanker paru A549, sel migrasi

Jurnal Kedokteran Brawijaya, Vol. 28, No. 4, Agustus 2015; Korespondensi: Al Munawir. Department of Pathology Fakulty of Medicine University of Jember, Jl. Kalimantan 37 Jember Indonesia Tel. (0331) 330224 Email: almunawir.fr@unej.ac.id
INTRODUCTION
The beneficial effect of garlic (*Allium sativum*) and their constituent include hypolipidaemic, hypoglycaemic, chelating agents, immune stimulants, antihypertensive, antimicrobial, and possibly anticancer effect. Consumption of fresh garlic may be linked to potential cytotoxicity of intestinal cells, not boiled garlic. Therefore, proteinaceous cytotoxic component of garlic has change their functional properties such as solubility, mobility and toxicity, during short boiling (1). Initial evidence for the anticancer effect of garlic was provided by epidemiological study, that high intake of garlic may be associated with a protective effect against stomach and colorectal cancers. Preclinical animal studies have indicated that garlic is highly effective in affording protection against cancer induced by a variety of chemical carcinogens. For instance, Belman demonstrated that topical application of garlic and onion oil inhibited the incidence of tumor promoted by phorbol-myristate acetate (2). Cancer chemoprevention by garlic constituents has been observed against benzo[α]pyrene-induced forestomach and pulmonary cancer in mice, *N*-nitrosomethyl-benzylamine induced esophageal cancer in rats, azoxymethane-induced colon carcinogenesis in rats, and 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine induced mammary tumorigenesis in rats (2-5).

Elucidation of the mechanisms by which garlic may offer protection against cancer has been a passionate subject of research for the past 20 year. There are summaries of molecular targets of cancer chemoprevention by garlic, including modulation of carcinogen activation, induction of phase 2 enzyme and modulation of anti-oxidative enzymes, inhibition of post-translational modification of oncogenic Ras, inhibition of cell cycle progression, histone modification, induction of apoptosis, as well as inhibition angiogenesis and metastasis. Focal adhesion kinase (FAK) is an important regulator of cell migration in which a function required for the invasion and metastasis of cancer cell (6). Because of its major role as kinase upstream of a number of signaling pathways involved in the processes metastasis, manipulation of FAK is likely to be more effective than manipulation of downstream targets (7). The adapter protein, paxillin, is important in scaffolding a large number of proteins to the focal adhesion kinase. Moreover, overexpression and/or increased activity of FAK are common in a wide variety of human cancers, implicating a role for FAK in carcinogenesis. Given the important role of FAK in a large number of processes involved in tumorigenesis, metastasis and survival signaling FAK should be regarded as a potential target in the development of anti-cancer drugs. Therefore, selective inhibitors of FAK need to be developed. Combination of these selective FAK inhibitors with cytotoxic agents could be a very promising anti-cancer therapy. In the present study, the precise mechanism whether non toxic dose of boiled garlic extract could inhibit migration of A549 lung cancer cell line *in vitro* was analyzed.

METHOD

Rabbit Polyclonal Anti-FAK Antibody
Rabbit polyclonal anti-FAK antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit polyclonal anti-FAK [pY737] antibody was purchased from Biosource International (Camarillo, CA, USA). Monoclonal anti-GAPDH antibody (clone 6G5) was purchased from Biogenesis Ltd. (England, UK). All other reagents used were of the purest grade available.

Preparation of Boiled Garlic extract
Garlic cultivated as an environmental-friendly agricultural product was purchased from local supermarket near Jember last July 2013. Fresh garlic cloves (250 g) were homogenized in 500 ml ice-cold distilled water using kitchen blender for 30 sec. The homogenates were filtered through four layers of medical gauze and the filtrate was lyophilized. The yield of extract (23.5 g powder) was stored at -20 °C until use. For experiments, one gram of the lyophilized garlic powder was extracted with 10 ml PBS, by vigorous vortexing (30 sec for 5 times with intermittent cooling on ice for 1 min) and centrifugation (10,000 × g, 10 min). Aliquot of the above fresh garlic extract was heated in boiling water for 30 min, then centrifuged at 10,000 × g for 10 min and the supernatant was used as boiled garlic extract (BGE). Protein concentration of the supernatant was determined using Bradford assay (8).

Cytotoxic Effect of Boiled Garlic Extract
A549 lung cancer cells were seeded in 24-well plates at a density of 2 × 10^4 cells/well in 1 ml MEM containing 10% FBS overnight at 37 °C. Non-adherent cells were removed by gentle washing. Then cells were treated for 24 hr with various concentrations of boiled garlic extract. To assess cell viability, 100 µl of MTT solution (5 mg/ml) was added to each well and incubated for another 4 hr at 37 °C. After the removal of supernatant, the generated formazan crystal was dissolved by adding 125 µl/well of DMSO and the absorbance was detected at 540 nm using ELISA reader (Bio-Rad, USA). The percentage of cell viability was calculated as follows:

\[
\text{Cell viability} \% = \frac{\text{absorbance}_{540 \text{ nm}} \text{ of experimental well}}{\text{absorbance}_{540 \text{ nm}} \text{ of control well}} \times 100
\]

Scratching Wound Assay
A549 lung cancer cells were seeded into six well culture plates and allowed to grow to approximately 90-95% confluence. Similar sized wounds were introduced to monolayer cells using a sterile yellow pipette tip. Wounded monolayer cells were washed three times by PBS to remove cell debris and then cultured with or without BGE. The speed of wound closure was monitored and photographed every 8-12 hr using a phase-contrast microscope until complete wound closure was observed in the untreated control (9).

Agarose Drop Migration Assay
A549 lung cancer cells (10^5 cells) in 50 µl of free serum medium DMEM were mixed with 150 ul of 0.2% (w/v) SeaPlaque agarose (Cambrex Bio Science Rockland, Inc., ME, USA) in free serum medium DMEM. One or two microliter size drops of cell suspension were gently delivered onto the pre-cooled surface of 48-well plates. The agarose was allowed to solidify for 10 min at 4 °C. Covered with 200 ul of complete medium (DMEM+FBS 20% + Ab 1%) with BGE 75, 150, and 300 µg/mL or vehicles were added, and centrifuge. It did incubate at 37 °C for 24 hr. Take a picture using phase contras and 100 x. Cells that migrated out of the rim of the drop were counted for.
Various concentrations of BGE were treated A549 lung cancer cells for 24 hr. The cytotoxicity of BGE was determined by MTT assay. Compared to that of controls, the remaining cell viability was not significantly altered by boiled garlic extracts, even at a concentration as high as 5 mg/mL (Fig. 1.). It was therefore clear that a 24 hr treatment of boiled garlic extracts, at the concentration ranging from 0 to 5 mg/mL, has no cytotoxicity to A549 lung cancer cells, highly metastatic cancer cells. This concentration range was then applied in all subsequent experiments.

Figure 1. Cytotoxic effect of boiled garlic extract on A549 lung cancer cells

Note: Exponentially growing A549 lung cancer cells were exposed to boiled garlic extract in DMEM complete media, and then incubated for 24 hr. Cell viability of each treatment was assessed using MTT assay. The results are expressed as mean ± SD for three independent experiments. **p<0.01 when compared to control.

Boiled Garlic Extract Inhibits Cell Migration of A549 Lung Cancer Cells

In order to determine the inhibitory effect of boiled garlic extracts on cell migration of A549 lung cancer cells, analyses were carried out using two distinct cell migration assays, such as scratch wound assay and agarose drop migration assay. The results indicate that boiled garlic extract inhibits the cell migration of A549 lung cancer cells in a dose dependent manner using scratch wound assay (Fig. 2; Fig. 3); and agarose drop migration assay (Fig. 4; Fig. 5).

Figure 2. Statistical analysis of scratch wound assay

Note: Statistical analysis was used image open software (National Institute of Health, Bethesda, Maryland, USA). The results are expressed as mean ± SD (n=3). **P<0.01 when compared to control.
Boiled Garlic Extract Inhibits Colony Forming of A549 Lung Cancer Cells

In order to determine the inhibition effect of boiled garlic extracts on colony forming of A549 lung cancer cells, 500 cells of A549 lung cancer cells in 2 ml of DMEM complete media were plated into each well of 6-well plates. The cells were cultured in the absence or presence of BGE concentrations of 150 and 300 µg/mL. After 7 days incubation, stop experiment and stain by crystal violet. Colony forming was counted by ImageJ open software (National Institute of Health, Bethesda, Maryland, USA). The results indicate that boiled garlic extract inhibits colony forming of A549 lung cancer cells at dose dependent (Fig. 4).

Western Blotting Analysis

Activation of FAK on cancer cells related with increasing cell migration and proliferation (18). Paxillin is an adaptor protein down-regulation of FAK that related with cell motility. Therefore, the western blotting analysis was performed to see the effect boiled garlic extracts on FAK and its phosphorylation. The result was shown that boiled garlic extracts inhibited migration A549 lung cancer cell by decreasing the level of FAK and its phosphorylation (P-Y) in cancer cells after 3 hr (Figure 7).
DISCUSSIONS

Cancer metastasis is the leading cause of cancer deaths. It is a multi-step process that a tumor cell migrates to distant organ as new colony. There are several important event, including infiltration, invasion, migration, angiogenesis, escape from immune surveillance as well as forming new colony. In addition, cell migration plays an important role in diverse biological processes, such as development, the immune response, and cancer metastasis. The actin cytoskeleton is key component in cell migration. In which tumor cell attachment to the extra-cellular matrix components, the gradation of the matrix by tumor cell-associated proteases, and tumor cell progression into the region where the matrixes were modified by proteolysis. Evidence from several investigations suggests that some components of the diet supplements, including garlic, have shown anti-metastatic effect on cancer cells (13,14). The mechanism of anti-metastatic of garlic extract was not fully understood yet and therefore, this study attempts to elucidate the mechanism an anti metastatic effect of a brief exposure to boiled garlic extract (BGE) on A549 Lung cancer cells line in vitro.

In the present study, the effects non-toxic concentrations of boiled garlic on cell migration of A549 lung cancer cells were analyzed. Instead of using colony forming assay for analysis capacity of individual cancer cell forming new colony, were carried out by two distinct cell migration assays, using scratch wound assay and agarose drop migration assay. It was found that boiled garlic extract inhibited not only the cell migration, but also the colony formation of A549 lung cancer cells at the concentration of 300 µg/mL. This result may be can answer some problem on anti cancer agent, which it generally using toxic dose with some side effect. BGE was not containing toxic compound or decreasing beneficial compound. The bioactive compound such as selenium and copper content of rawgarlic is not altered by boiling (1,15-17). Therefore, BGE can be used as nutriceutical compound for chemopreventive of cancer metastasis. In addition, the mechanism of migration and colony formation inhibitory effect of boiled garlic were confirmed by Western blotting analysis. Interestingly, BGE inhibits migration and colony forming of A549 lung cancer cells by decreasing the level of FAK and its phosphorylation (P-Y397) from 3 hr after the treatment. Cell migration is a complex process that involves rapid change in dynamic of actin filaments, together with the formation and disassembly of cell adhesion site. FAK is crucial signaling component that is activated by numerous stimuli and function as biosensor or integrator to control cell motility. FAK can influence the cytoskeleton structure of cell adhesion site and membrane protrusion to regulate cell movement. Activation of FAK on cancer cells related with increasing cell migration and proliferation (18). The adapter protein, paxillin, is important in scaffolding a large number of proteins to the focal adhesion kinase (19-22).

For decades, the fighting cancer has been an ongoing battle, and until now, there is no exact way to treat this disease. Conventional treatments include surgery and chemotherapy, nevertheless, these methods have several limitation including physical pain, increased relapse and lower survival rate (2,6). One of the main reasons of cancer treatment is to eliminate cancer cells with minimal or no side effect; it is also favorable that it inhibits the metastatic process as well. Natural products have an important role in search for new drugs, even some of the most famous widely used drugs are discovered from natural sources. BGE that used in this study, was still crude extract. Its not clear which compound of BGE is responsible for the metastatic observed in the study. It can be one of the above or an unidentified one yet. To clarify this, further studies will be needed in the future.

Taken together, the results suggested that the present finding demonstrates a novel anti-metastatic effect of garlic and a certain garlic-derived compounds of BGE may be a potential agent for inhibiting cell migration and colony forming by the modulation of FAK in cancer cells.

CONFLICT OF INTEREST

No competing financial interests exist.

REFERENCES

7. van Nimwegen MJ and van de Water B. Focal Adhesion

